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Abstract
We discuss three approaches that have been used in obtaining the Born approximation for
Coulomb scattering: The standard approach, making use of a convergence factor (“screening”),
Oppenheimer’s approach using cylindrical (instead of spherical) coordinates, and finally Landau
and Lifshitz’ approach. We simplify and clarify Oppenheimer’s calculation, which has been rarely
used because of its complications, and make the Landau and Lifshitz method rigorous. Although
the latter method does require some background from the theory of generalized functions, it is

nevertheless a very instructive and important technique deserving more exposure to intructors and

theoretical physicists in general.

I. INTRODUCTION

Our knowledge about elementary particles and their interactions is based mainly on scat-
tering experiments, making scattering theory a very important subject. Quantum mechanics
texts' 3 usually deal with scattering from a potential using the Born series expansion for the
scattering amplitude and work out examples by evaluating only the lowest term of the series,
the so-called Born approximation. In the present paper we shall be concerned with the cal-
culation of the Born approximation for Coulomb scattering; however, for some applications
of the Born approximation in strong interactions we refer the reader to Kozack.*

In a seminal 1911 paper on atomic structure, Rutherford® derived the expression for the
differential cross section of Coulomb scattering using only classical mechanics. (A derivation
in a modern text may found in reference [6].) In fact, Rutherford introduced the concept of
what we now call the differential cross section for potential scattering. As Weinberg? points
out, Rutherford was lucky in that the Coulomb case is the only one for which the classical
result agrees perfectly with the quantum result!

It was not until 1926 that Born™® used quantum mechanics to derive the series expansion
for the scattering amplitude, whose lowest term is referred to as the Born approximation,
fB. Born also noted the fact that each term in this series diverges for the case of the
Coulomb potential. Four months later, Wentzel? evaluated fp for Coulomb scattering in

spherical coordinates by making use of a convergence factor. To our knowledge, all quantum
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mechanics texts perform the integration involved in calculating fp using Wentzel’s limiting
procedure. However, in 1927 Oppenheimer!® derived the Born approximation for Coulomb
scattering without the use of Wentzel’s limiting procedure by performing the integrations
in cylindrical coordinates. Unfortunately his calculation is unnecessarily complicated due
to his choice of the orientation of the momentum transfer vector ¢, and this is probably the
reason it has disappeared from the literature.

In this paper, we greatly simplify and clarify Oppenheimer’s calculation in the hope that
this version will be a useful alternative to lecturers on this subject. Finally we present a
calculation of fg found in a lesser known Landau and Lifshitz text.!! Unfortunately the
presentation by Landau and Lifshitz involves a number of mathematically illegal steps. To
put it another way, the derivation assumes, but does not mention, that the reader should be
familiar with generalized function theory in order to justify the steps. We clarify the deriva-
tion and, in the Supplementary Material'?> give an exposition of the necessary generalized
function theory that makes all the steps in reference [11] rigorous.

In Sec. II we review the standard calculation of the Born approximation for Coulomb
scattering. In Sec. III we give the simplified version of Oppenheimer’s approach. In Section
IV we go over the Landau and Lifshitz derivation. The Supplementary Material'? is required
for a deeper understanding of Section IV and is devoted to an elementary presentation of
all the necessary tools from the theory of generalized functions. Finally, in Sec. V we sum
up our results. Appendix A deals with our choice of units and dimensions; Appendix B is
a review of potential scattering; and in Appendix C we give some details of Oppenheimer’s

original calculation.

II. THE BORN APPROXIMATION I

We first outline the standard calculation of the scattering amplitude in the Born approx-
imation. It is convenient to adopt Planck natural units so that, ¢ = A = 1; see Appendix A

for more details. The momentum transfer vector ¢, is given by (see Appendix B, Fig. 1)

q_‘: ﬂ1/7[71a (1)

where p; and p] are, respectively, the initial and final momenta of one of the particles in the
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center of mass frame. For elastic scattering, |p1| = |p]| = p, and we have that,
0
q = 2psin (5) , (2)

For a spherically symmetric potential energy, V (r), the scattering amplitude in the Born

where 6 € [0, 7] and thus ¢ € [0, 2p].

approximation is given by Eq. (B31) in Appendix B3,

Jo =g [ V(e b, 3)

where m = myma/(my + my) is the reduced mass, so that for electron - proton scattering,
m =~ m.. When using spherical coordinates, (1,9, @), to evaluate Eq. (3), it is important
to bear in mind that the angle ¥ is not related to the scattering angle 6 in Eq. (2). In

performing the integrations, it is most convenient to choose the polar axis in the direction of

the vector ¢, so that the exponent —ig- ¥ = —iqr cos?. Integrating over ¢ and ¢, we obtain
2m [ .
fB=—"— V(r)sin (qr) r dr. (4)
q Jo

In the Gaussian system of units (see Appendix A), the Coulomb potential energy (or

Coulomb potential for short) is given by
V(T‘) = T (5)

where we have assumed for simplicity that the particles have charge +e. The signs, (+, —),
correspond to repulsion and attraction respectively. Equation (5) can easily be generalized
for other charges.

The convergence of the integral in Eq. (4) in spherical coordinates requires that,'3

/oor2|V(r)\dr <o (6)
0

Thus it is evident that V() does not vanish sufficiently fast at large r to allow for a straight-
forward evaluation of the above integral.
The universally adopted procedure in the Coulomb case is to define fp using the expres-

sion below (we use := for definitions)
. 2m [ .
fp = lim (——/ V(A7) sin (qr)rdr) , (7)
0

4
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where V' (X, r) is often referred to as the screened Coulomb potential,

VA7) = 462 ("’_M> . (8)

r
In our units, the parameter A has dimensions of inverse length (or mass), and so it is related to
a cutoff length, r., by A = 1/r.. The exponential factor in Eq. (8) is a qualitative description
for the screening of the nuclear charge of an atom by the electrons of the surrounding shells
(regarded as a continuous charge density). A potential of the form (8) is also known as
the Yukawa potential because it was proposed by Yukawa! to describe the strong nucleon-
nucleon interaction mediated by the exchange of a spinless boson of mass A, (with g* instead
of €?).

Wentzel?, who carried out the original calculation of the Born approximation for the
Coulomb potential, wrote: “So you cannot get by with the pure Coulomb field but at
least qualitatively you have to take into account the screening by the outer electron shells”
(our italics). Under these circumstances, the cutoff r. would be on the order of an atomic
radius. However he added that “...the special choice of the exponential function in [our Eq.
(8)] is completely irrelevant for the end result; it only offers the advantage of ensuring the
convergence of the method in the simplest possible way.” A lot of research on screening, both

11516 and experimental,'”® has been carried out. Nevertheless it is important to

theoretica.
recall that the Born approximation for Coulomb scattering is also valid for electron-electron
scattering where there is no screening due to a surrounding electron cloud as in atoms. Here,
one would have to introduce the idea of vacuum polarization of the virtual pairs and charge

renormalization® 2!

and make an intuitive argument that effectively, the target charge varies
so that

e—e(e™). (9)

Oppenheimer’s approach avoids these problems by obtaining fg without the need of a con-
vergence factor.

It is worth pointing out that higher-order terms in the Born series with the potential of
Eq. (8) diverge in the limit A — 0,°*?* and require a special procedure in order to cancel
the divergences.?t

We should add that Mott,%® and independently Gordon,? calculated the ezact Coulomb
potential scattering amplitude by solving the Schrodinger equation. Although their ap-

proaches are very different, neither of them needed any convergence factor. Both calcula-
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tions are rather demanding. Gordon’s method, making use of parabolic coordinates, is the
one worked out in detail as an exact solution, but only in more advanced quantum mechanics
texts.??2 Gordon’s solution is another example where a judicious choice of the coordinate
system is helpful.

In Wentzel’s convergence factor approach, Eq, (7) is the Laplace transform of sin (gr).

The integration is standard and is done by performing two integrations by parts, thus

. 2me? (™ . .
/5= }1;110 (¥ . /0 e " sin (gr) dr) (10)
. 2me?
= Jim, (qﬁ m) (11)
2me?
=7 12
Z (12)
2
me
=F————r, (13)

where we have used Eq. (2).

III. THE BORN APPROXIMATION II

In this section, following Oppenheimer’s approach, we begin with Eq. (3) and use cylin-
drical coordinates (z, o, ¢). In contrast with his choice of the orientation of the momentum
transfer ¢ (see Appendix C, Eq. (C11)), we choose the direction of the vector ¢ to be along
the positive z-axis; thus the exponent in the integrand of Eq. (3) is —iq- ¥ = —igz, which
considerably simplifies Oppenheimer’s original calculation. The Coulomb potential V', Eq.

(5), is now given by

62

Ve

The resulting integrals in this case are referred to as iterated integrals, i.e., the integrations

Ve, z) =+ (14)

over z and p have to be done in the order in Eq. 15 below. (Oppenheimer does not mention
this). The condition under which one is allowed to interchange the order of integration

is given by Fubini’s theorem,?” and the integrals in Eq. (15) fail to satisfy this condition

6
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because the integration of the absolute value of the integrand over z does not converge.

Therefore we have that,

i = / Todo [T [T (15)
pi=Fo— | o @/ ———dz | dp, 15
2r Jo —o0 \/m 0

) 0 o] e*iqz
= Fme /0 gdg‘/_m\/ﬁdz, (16)

:¥2m62/ 0 Ko(qo) do, (17)
0

2me?
2 (19)

which is again Eq. (12). K, is a modified Bessel function of the second kind. The integrals
involved in Eq. (16) and (17) may be found, for example, in reference [27], or may obtained
immediately using Mathematica® or any other symbolic computation software. In connec-
tion with the integral in Eq. (17), we remark that, although lim, ,o [Ko(go)] — oo, it turns
out that lim, ¢ [0 Ko(qo)] = 0, so everything is well-behaved.

IV. THE BORN APPROXIMATION III

In this section we present the final calculation of the Born approximation for the Coulomb
potential case which was given (as far as we know) only in a lesser known text by Landau
and Lifshitz!! (not to be confused with reference [1]). This derivation takes advantage of
the fact that the Born approximation of the scattering amplitude, Eq. (3), is the Fourier
transform of the potential V(7) (apart from an overall constant). In our derivation below,
we use an intermediate function ¢(7) and initially assume it is sufficiently well-behaved so
that the various steps in the calculation are permissible. An example of such a function is
g(7") = exp(—r?/2). In the Supplementary Material,'* we present a sufficient amount of
the theory of generalized functions to enable us to make all the steps below mathematically
rigorous.

The Fourier transform g(¢) of the function g(7) is given by,

@) / o) T By, (19)

7
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where in Cartesian coordinates (z,y, z), we have, d®r = dzdydz, d*q = dq,dq,dq., and all
limits of integration are —oo to +o0.
It is useful to recall the integration by parts formula for the case involving second deriva-

tives. Suppose we have two sufficiently well-behaved functions f(z) and ¢(z), then
% (f'o=1¢") = 1"0 = f¢". (20)
Integrating both sides of Eq. (20) over z € (—o0, +00), we have
| reae=iso- o1 [t 1)

and remark that if the functions f and ¢ are such that the term in brackets on the right-hand

side of Eq. (21) vanishes at the integration limits, then Eq. (21) reduces to

| reds= [ 1 (22)

If instead, f and ¢ were functions of (z,y, z), then the integrals would be over the three-
dimensional Euclidean space R?, and the term in brackets in Eq. (21) would contain two-
dimensional integrals. Nevertheless, if f and ¢ and their derivatives vanish sufficiently fast

at +00, we would obtain the generalization of Eq. (22), namely
/ Nfodir :/ fApd®r, (23)
R3 R3

where A is the Laplacian. Using Eq. (23), one can show that the Fourier transform A\q of
Ag=(02+02+0?) g, is

/(Ag) eI By = gA (e_“ﬁ) &r=—¢* 9(q), (24)

where ¢* = ¢; + ¢, + ¢Z. Then from Egs. (19) and (24), we have that
R 1 R
3@) = [oeyear = -2 [(ag e (25)
q
In our case, using Eq. (3), we see that

+e2 o
m [ (e )e_"”'Tddr (26)

fs=

o)
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and so

1
g(F) = TS (28)
||
where |77| = r = \/a? + y? + 22. At this point we use the equation,
1 S
A = —4nd(T). (29)

G
Equation (29) is derived in the in the Supplementary Material'? using the appropriate math-
ematical tools. Substituting Eq. (29) in Eq. (25), we find that

Sy AT
9(q) = 2 (30)

which when substituted in Eq. (27) gives us the desired scattering amplitude

2me?
fB=%F Z (31)

It is clear that in the integration by parts which led to Eq. (24), we discarded several
terms without any justification. Furthermore the resulting integrals in Eq. (24) do not exist
for the ¢g(7) of Eq. (28). The preceding calculations and Eq. (29) can be made rigorous only
in the context of the theory of generalized functions. In the Supplementary Material,'? we
present a concise introduction to the necessary formalism, derive Eq. (29), and prove Eq.

(24). |

V. SUMMARY

We saw that in Wentzel’s approach in Sec. II, Eqgs. (7)-(8), the prescription is: Perform
the integration first and then take the limit A — 0. In Oppenheimer’s approach in Sec. III,
Eq. (16), the prescription is: Do the iterated integrals in the prescribed order. There is
no escaping the fact that the Coulomb potential does not satisfy Eq. (6) and consequently
evaluating the Born approximation requires special care. We hope that our simplification and
clarification of Oppenheimer’s calculation will be be a useful addition to the usual textbook
presentations on this subject. However we believe that Landau and Lifshitz derivation using
the theory of generalized functions is the most satisfactory both from the mathematical and
physics point of view since it does not require any extraneous assumptions nor an a priori

knowledge of the final result.
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Appendix A: Units and dimensions

We use Planck natural units, ¢ = h = 1, and with respect to the electromagnetic equa-
tions, Gaussian units. Thus the Coulomb potential energy for two simple charges, each
+e, e >0, is

Vi) ===, (A1)

where the signs, (+, —), correspond to repulsion and attraction respectively. In our units

the fine structure constant is dimensionless and

e? 1
~ A2
he 137 (42)
From the Compton wavelength relation below,
2rh  2rmhe
Ao =28 (A3)
me  me

it follows that in natural units all quantities have dimensions of length, L, or inverse length.
In particular [E] = [p] = [m] = L7%.
It is also useful to keep in mind that since the differential cross section has dimensions of

area,

{%} _1e (A4)

we have that the scattering amplitude has dimensions of length,

[f(p.0)] = L. (A5)

Appendix B: Review of scattering theory

In this Appendix we outline some relevant material leading to the Schrédinger equation
for elastic scattering by a central potential,%??%3! the definition of the scattering amplitude,

f(p,0), and the Born approximation, fz(p, ).

10
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1. Reduction of the two-particle Hamiltonian

The Hamiltonian operator for two particles whose interaction is given by a function

V(|71 — 72|) (which is invariant under the simultaneous translation of the 7;’s) is

i P
H= + + V(JF — 7)), Bl
2my  2me (7 2l) (B1)
where p; and ps are the momentum operators of particle 1 and 2 respectively. The corre-

sponding Schrédinger equation is

HY (7, 75) = EW(r, 7). (B2)
The canonical transformation,
Fef -y, B= TR (B3)
mi + mo
L MaP — mypx T,
p="2 R B g, (B4)

my + ma

where using r = || as the distance between the two particles, and R as the position of their

center of mass, transforms the Hamiltonian of Eq. (B1) into

P2 172
H= —— —4+V B5
2(my + ma) N {2771 + (T)} ' (B5)
= Hopn+ H. (B6)
The mass m is the reduced mass of the system,
L (B7)
my + Mms

Thus the two-particle Hamiltonian of Eq. (B1) has been reduced to a sum of two independent
Hamiltonians. H.,, is the Hamiltonian for the motion of the center of mass of the system,
which moves as a free particle with constant momentum ﬁ, while H is the Hamiltonian of
a particle having mass m and moving in the potential energy field V(r). It follows that the

wavefunction ¥ of Eq. (B2) factors into two independent parts, and may written as
(1) = e, (B8)

11
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The Schrodinger equation for the wavefunction 1 is
D(F) +2m (E = V() () = 0, (B9)

where A is the Laplacian in spherical coordinates (r,0,¢). Since our potential depends
only on r, the wavefunction ¢ will be independent of the azimuthal angle ¢. The energy
E = p?/2m.

Choosing the origin of our coordinate system so that R =0and differentiating the second

equation in Eqs. (B15) with respect to time, we obtain
pL+p2 =0, (B10)

while from the first equation of Egs. (B4), we have that
=i (B11)

We let p, p2 be the incoming particle momenta in the center of mass system, and py, py the
outgoing particle momenta. In elastic scattering the incoming and outgoing particles are
the same, and, moreover, their kinetic energies must be equal before and after the collision;

thus

i P ) () (B12)
le ng 2m1 2m2.

From Egs. (B9)-(B11), it follows that

p =Pl = [pa| = [5Y] = [Pl - (B13)

q=p — (B14)
and using Eq. (B13), we have that
¢* = 2p*(1 — cos?), (B15)

where 6 is the the center of mass scattering angle, 8 € [0, 7]. In Fig. 1 below we show the
ingoing and outgoing momenta for elastic scattering in the center of mass frame and the

momentum transfer vector §.

12
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FIG. 1. We show the ingoing and outgoing momentum vectors for elastic scattering in the center

of mass frame, and the momentum transfer vector ¢.
2. The scattering amplitude

In th time-independent description of scattering, in the asymptotic region where V(1) ~ 0,
the total wavefunction consists of three parts. First, two plane waves, one representing the
incident particles and another with the same momentum corresponding to the unscattered
particles. These are indistinguishable in the time-independent description, and so we write

(recall Eq. (B10))
Yin = €77 = 72, (B16)

where we have chosen z to be along the incident beam direction (the polar axis). The
third part of the wavefunction is an outgoing spherical wave corresponding to the scattered

particles, which we write as,

eipr
Ve S0 (B17)
We point out the following useful relations,
. 7
P=p-, (B18)
r
pi-T=pr, (B19)
p1 Py =p?cosf. (B20)
13
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In fact then,

B = e + Fp0) 40 (%) . (B21)

r

The function f(p,0) is the scattering amplitude and is in turn related to the differential
scattering section by the relation

o o, (B22)
The differential cross section do/dS2 is equal to the number of particles (of a given kind)
scattered in the direction 0, per unit solid angle, per unit time, per unit incident flux, per
scatterer.

Although we have skipped a lot of important details, we would like to mention that the
normalization of the asymptotic form of ¥ in Eq. (B21) was chosen so as to agree with our
definition of do/dQ). In summary, we see that in order to obtain f(p,#), we have to solve
the Schrodinger equation for ¢, and then find its asymptotic form, Eq. (B21).

We should add that the case of identical particles requires special care, since 1 has to
be made symmetric or antisymmetric depending on whether the total spin of the incoming
particles is even or odd respectively. We refer the interested reader to the best treatment
on this subject, namely, section 137 of reference [1]. Here we give the result for simplest
example: that of two, zero spin, identical bosons, in which case instead of Eq. (B22), we

have
do

3. The Born approximation

Schrédinger’s equation (B9) can be converted into the integral equation,®
w7 = 77 2 [y iy (B21)
21 ) |7 =7 ’
where V(r') is again a centrally symmetric potential. The integral equation (B24) is exact
and has the advantage that it is constructed so that the “boundary condition” of Eq. (B21)
is satisfied automatically by the solution (7). It was shown by Born® that the above integral
equation may be solved by iterating 1. The resulting series is called the Born series.
In the present paper we are concerned with the lowest order term in the Born series,

the so-called Born approzimation.t In order to calculate this term, we have to make some

14
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reasonable approximations to Eq. (B24). If we assume that V(r’) decreases sufficiently
rapidly as r’ becomes large, then the domain of integration over r’ is essentially finite and

for very large r we can write

(B25)

)2 27\ 7
\F—F’|:r(1+(3 -— ) Ror—

r r r
Although we may further approximate | — 7’| ~ r in the denominator of the integrand,
the exponential depends sensitively on 7', no matter how large r is. Nonetheless, using Eq.

(B18), we may write

=7 g o (=EF) _ gipr—ipli, (B26)

Then, using Egs. (B25) and (B26), we can simplify Eq. (B24)

() e (em) / TV (Y (), (B27)

r

and comparing with Eq. (B21), we obtain

)= =g [ HTVEE (525)

It is important to realize that, although we did some approximations in obtaining the asymp-
totic expression of Eq. (B24), the expression for the scattering amplitude f(p,6) above is
ezact. The lowest order approximation for ¥(7’) is (see Eq. (B27)),

W) ~ P (B29)

thus the scattering amplitude Eq. (B28) becomes

To(p.0) = —5~ [ FPITV (N, (B30)
™
:—% eIV (1) dPr, (B31)

where we have used the momentum transfer, ¢, Eq. (B14). At this point we may drop the

primes without any danger of confusion, and obtain our Eq. (3).

Appendix C: Oppenheimer’s choice

Before proceeding, we remind the reader that the angle ¥ in the spherical coordinates

below is not related to the scattering angle 6 in Eq. (2). We now consider the momentum

15
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transfer vector ¢ and the radial vector 7, with Cartesian components,
(=" q", q), (C1)
7= (2,9, %) (C2)
If we choose ¢ to be along the polar axis (i.e., the positive z-axis) then
7=1(0,0,q). (C3)
The Cartesian components of 7 expressed in spherical coordinates,(r, 9, ¢), are
7= (rsindcos ¢, rsindsing, rcos?), (C4)
thus
q-T=qrcosd. (C5)
Likewise if, instead, we express the Cartesian components of 7 in cylindrical coordinates
(z,0,¢), we have
7= (ocosp, gsing, z), (C6)

and thus we have

7-7=qz. (C7)
Oppenheimer'® chose 7, to be along the positive z-axis, so that

Then without loss of generality p], may be written as (see Fig. 1)

Py = (psind, 0, pcosf), (C9)
hence
¢= (psinf, 0, pcos —p). (C10)
So using Eq. (C6) we obtain
q-7=posinfcosp + p(cosh — 1)z. (C11)

As the reader may check by consulting reference [10], the above choice complicates his

calculation considerably.
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